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Beyond Efficacy: Rethinking What “Working” Really Means in Medicine

Can 1t work? Does i1t work? Is it worth it?

The testing of healthcare interventions is evolving

Cochrane defined three concepts related to test-

ing healthcare interventions.! Efficacy is the
extent to which an intervention does more good than
harm under ideal circumstances (“Can it work?”). Effec-
tiveness assesses whether an intervention does more
good than harm when provided under usual circum-
stances of healthcare practice (“Does it work in
practice?”). Efficiency measures the effect of an interven-
tion in relation to the resources it consumes (“Is it worth
it?”). Trials of efficacy and effectiveness have also been
described as explanatory and management trials,
respectively,” and efficiency trials are more often called
cost effectiveness or cost benefit studies.

T he British pioneer clinical epidemiologist Archie

BMJ 1999;319:652-3

Even if an intervention works astonishingly well in
a “Can it work?” study, it may not work well in usual
care. Effectiveness in the community depends not only
on efficacy but also on diagnostic accuracy, provider
compliance, patient adherence, and the coverage of
health services.” Misdiagnosis can result in the wrong
people getting or not getting the treatment. Providers
often fail to prescribe or administer the treatment
properly. Patients typically take less than half of
prescribed treatments. “High tech,” expensive, or new
interventions are usually not available in all communi-
ties in the developed countries or to most communities
in the rest of the world. To paraphrase Muir Gray, what
works well at the Sloan Kettering (a high tech cancer

General practice

p 676

Can it work?
Does it work?
Is it worth it?



Rare Cancers Represent an Unmet Need That Cannot Be
Resolved by Conventional Drug Development Paradigms

Challenges to developing drugs to treat rare cancers are
NUMErous:

(1) extreme difficulty enrolling sufficient number of patients to
clinical trials, which approaches being almost impossible for ultra-

rare cancers;
(2) decreased financial incentives for drug development;
(3) inadequate research into natural history and cancer biology;

(4) virtually unmanageable challenges to conduct randomized
trials because of small patient numbers and lack of an appropriate

standard of care for the control arms.
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Imperative of Comprehensive Molecular Profiling as
Standard of Care for Patients With Rare Cancers
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In the current evolving landscape of cancer treatment, the notion that all patients with
advanced cancer, but especially those with rare cancers, must receive comprehensive
molecular profiling as part of their care is becoming increasingly compelling.! In a viewpoint,

we posited that universal tumor genomic testing, in particular next-generation sequencing
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How do clinical trials progress?

Target Lead compound Pre clinical Phase Phase Phase FDA Phase
identification optimization studies 1 2 3 approval 4
100,000 compounds > 5 compounds > 1 compound
3-4yr 8-10 yr 1yr
<lyr <2-3 yr

Next-generation Al technology

Efficacy and structure of

current compounds \

All omics data # .\‘fak"{

Genomics/proteomics — ’J"f \,‘_QQ ‘\’fef 'V ,
loMT + All - ;& k’”éﬁé&”?ﬁﬁ@&
datasets &\ .A”.A“./’

All publications and clinical trial data
+ All EHR

+ All natural history data (block chain
technology)

Al/DNN/ML

~

Rapid + safe next-generation trials

Precision medicine

Next-generation compounds

Subbiah, V. et.all (2023)
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THE CHALLENGES OF CONDUCTING AN Randomized controlled trials (RCT)

Stage 2 Stage 3 Stage 4

Stage 1) plannin of a clinica - T

trial that targets the new T Treatment Effect Estimation

Reinforcement Learning e
treatment, aSeis
Transfer Learning Determining dosage Subpopulation analysis Indication expansion

(Stage 4) clinical-use of the

Optimal Design Inverse Reinforcement Learning Few-Shot Learning

treatment if the trial has been

successful.
Synthetic Data

Streamlining data sharing o . - .
i -tri Facilitating RWD access and analysis
Augmenting pre-clinical/cross-trial data e al ks ool Anonymizing results for reporting
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Clinical Trials fails
A Neuro-Oncology

_ R=-0.9, p< 0.00001 R=-0.5, p=0.026
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Phase

Key Points

37.9% failed to reach their enrollment (all
ph ases, less in P hase 2 /3) e Neuro-oncology clinical trial completion rates have significantly decreased over the past 2

decades, from 78% to 64%.
e Fifty percent of the US population affected by neuro-oncology diseases have limited access to

neuro-oncology trials.



Synthetic Data to accelerate research in pharma-oncology

Synthetic data are artificial data generated by an algorithm trained to learn all the essential
characteristics of a real dataset. The new data are neither a copy nor a representation of the real
data. Synce they are not real data; they are not regulated by particular limitations so they can be
easily accessed and shared

Machine learning models

Data holders ® °
(e.g., hospitals) .- @
- Synthetic data -
— p | Symnetc 3 — ’
= generation UI I }
_Genomic Data _

Synthetic data Scientific comunity




Synthetic Data to accelerate research in pharma-oncology
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Synthetic Data

One of the limitations in genomics research is that human genomics data is not openly available; access must be controlled according to
participant consent agreements and data protection regulations such as GDPR. Obtaining authorization to access such data can
sometimes take a long time, resulting in delays to important research work. In this context, synthetic genomic and phenotype data can be
useful resources for researchers to avoid these delays.

[
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Synthetic data are artificially generated datasets, often created with algorithms, which can be used without the need for authorization to
test new products and tools, build technical demonstrators, validate data models, and train Al models. The EGA provides access to
synthetic cohort datasets augmented with rich synthetic metadata that overcomes these real data usage restrictions. Whilst synthetic
datasets are not included in the general EGA mandate and services, we can consider such submissions and evaluate their acceptance on
the basis of their unique use cases not already covered by existing synthetic datasets. Access to synthetic data studies is managed by the
EGA Helpdesk Data Access Committee.

EGAS00001002472 CINECA synthetic cohort EUROPE UK1 referencing fake samples Central EGA
EGAS00001005591 Synthetic data - Genome in a Bottle Central EGA
EGAS00001005042 Test Study for EGA using data from 1000 Genomes Project - Phase 3 Central EGA
EGAS00001005702 Human genomic and phenotypic synthetic data for the study of rare diseases Central EGA
EGAS50000000190 EOSC4Cancer Synthetic Colorectal Cancer Genomic data Central EGA
EGAS50000000086 Synthetic - FEGA Sweden Heilsa synthetic dataset December 2023 Federated EGA Sweden

EGAS5000000067 Synthetic - GDI synthetic data Federated EGA Spain




The WHO guidance on Ethics & Governance of Artificial Intelligence
for Health

28 June 2021 | Guideline

1) Transparency of models: interpretability and explainability

2) Reliability of models: independent validation of generated Al-models

3) Protection of data and data sharing: compliance with GDPR (EU)




Synthetic # Fake: Reimagining Data for Science and Privacy

Synthetic data could be better than
real data

Machine-generated data sets have the potential to improve privacy and representation
in artificial intelligence, if researchers can find the right balance between accuracy and
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From Performance to Privacy:
The Multidimensional Assessment of Synthetic Data

SDMetrics Dca |

Synthetic Data Metrics (SDMetrics) is an open source # Python library for evaluating tabular synthetic
data. Compare synthetic data against real data using a variety metrics, generate visual reports and
share them with your team.

Real vs [ET{E{3 Data

g

https://docs.sdv.dev/sdmetrics

Synthetic Data Privacy Metrics

Amy Steier Lipika Ramaswamy Andre Manoel Alexa Haushalter
Gretel.ai Gretel.ai Gretel.ai Gretel.ai
amy@gretel.ai lipika@gretel.ai andre.manoel@gretel.ai alexa@gretel.ai

Abstract

Recent advancements in generative Al have made it possible to create synthetic
datasets that can be as accurate as real-world data for training Al models, power-
ing statistical insights, and fostering collaboration with sensitive datasets while
offering strong privacy guarantees. Effectively measuring the empirical privacy
of synthetic data is an important step in the process. However, while there is a
multitude of new privacy metrics being published every day, there currently is no
standardization. In this paper, we review the pros and cons of popular metrics that
include simulations of adversarial attacks. We also review current best practices
for amending generative models to enhance the privacy of the data they create (e.g.
differential privacy).

SPRINGER NATURE Link
Findajournal  Publishwithus  Trackyourresearch Q Search
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Unraveling the Regimes of Synthetic Data
Metrics: Expectations, Ethics, and Politics

Brief Communication | Open access | Published: 04 June 2025
Volume 4, article number 44, (2025) Cite this article




Trust, Test, Validate: Metrics for Synthetic Data

« Statistical tests

¢ Sanity checks . e
inverse_kl_divergence The average inverse of the Kullback-Leibler Divergence
Metric Descrlptlon ks_test The Kolmogorov-Smirnov test
data_mismatch Average number Of columns Wlth datatype(object, reaL |nt) mismatch b‘ chi_squared_test The p-value. A small value indicates that we can reject the null hypothesis and 1
max_mean _ pancy Empirical i mean discrepancy.
common_rows_proport'lon The proportlon of rows in the real dataset leaked in the Synthetlc datas jensenshannon_dist The Jensen-Shannon distance (metric) between two probability arrays. This is t|
wasserstein_dist Wasserstein Distance is a measure of the distance between two probability dis
nearest_syn_neighbor_distance Average distance from the real data to the closest neighbor in the syntt . T —,
alpha_precision Evaluate the alpha-precision, beta-recall, and authenticity scores.
close_values_probability The probability of close values between the real and synthetic data. el EED e D L M R el
fid The Frechet Inception Distance (FID) calculates the distance between two distt
distant_values_probability Average distance from the real data to the closest neighbor in t

* Privacy metrics

* Synthetic Data quality . . i ) X i . X
Quasi-identifiers : pieces of information that are not of themselves unique identifiers, but are

sufficiently well correlated with an entity that they can be combined with other quasi-identifiers to

Metric Description
create a unique identifier.
performance.xgb Train an XGBoost classifier/regressor/survival model on real data(gt) ar
performance.linear Train a Linear classifier/regressor/survival model on real data(gt) and tt . .
Metric Description
performance.mlp Train a Neural Net classifier/regressor/survival model on the real data :
k_anonymization The minimum value k which satisfies the k-anonymity rule: each re«
performance.feat_rank_distance Train a model on the synthetic data and a model on the real data. Com
I_diversity The minimum value | which satisfies the |-diversity rule: every gene
detection_gmm Train a GaussianMixture model to differentiate the synthetic data fron
kmap The minimum value k which satisfies the k-map rule: every combin:
detection_xgbh Train an XGBoost madel to differentiate the synthetic data from the re - o o q o
28 ¥ delta_presence The maximum re-identification risk for the real dataset from the sy
detection_mlp Train a Neural net to differentiate the synthetic data from the real dat: identifiability_score The re-identification score on the real dataset from the synthetic d
sensitive_data_reidentification_xgb Sensitive data prediction from the quasi-identifiers using an XGBoc
detection_linear Train a Linear model to differentiate the synthetic data from the real d: - - X8 P q E
sensitive_data_reidentification_mlp Sensitive data prediction from the quasi-identifiers using a Neural |

“\ Tests
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Are Synthetic Data Real Enough? Sanity, Statistics, and Privacy

©,, 1. SANITY CHECKS

Queste metriche misurano se i dati sintetici sembrano "finti".

Metrica Interpreta cosi

data_mismatch.score =0 i domini dei valori sono compatibili

common_rows_proportion =0.011 & pochi duplicati dei dati reali — buono
nearest_syn_neighbor_distance piU alto = pib distanti — dummy_sampler pil vicino ai reali (possibil

overfitting)
close values probability.score ©, pit alto = valori troppo simili ai reali (rischio overfit)

distant_values_probability.score ) pili basso = dati meno distanti — plausibile

MutationState O [l 1

1| 2. STATISTICAL METRICS

Compara le distribuzioni statistiche reali vs sintetiche

Metrica dummy_sampler

jsd.marginal (0.012) Molto simile ai reali
chi_squared_test.marginal (0.75) Alta similarita

ks_test.marginal (0.946) Simile univariatamente

mmd.joint (0.043) Vicino ai reali anche in modo multivariato
wasserstein_dist.joint (0.214) Buono
prdc.precision/recall/density/coverage Ottimi valori (quasi 1)

@ Insintesi: dummy_sampler sta generando dati che sembrano statisticamente simili ai reali.

J 3. PRIVACY METRICS

Metrica dummy_sampler Interpretazione
delta-presence =1.17 & Buono (basso rischio)

k-anonymity.syn =11.5 4 Buona protezione

Kk-map = 8.0 i Accettabile

1-diversity.syn =2.0 ) Minima diversita

identifiability_score =0.5 I\ Pit alto = pil rischioso

DomiasMIA BNAF.aucroc = 0.5 No signal (chance level)

DomiasMIA_prior.aucroc = 0.654 I\, Qualche rischio, ma non eccessivo



Are Synthetic Data Real Enough?

| BT B

PTEN: S_pMSE =0.34 ATRX:S_pMSE = 0.84

Kaplan-Meier: Real vs Synthetic

Strata == source=Real =+ source=Synthetic
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IDH1: S_pMSE = 0.52 age_group: S_pMSE = 0.69

p = 0‘99 100-
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Synthetic data

The emerging risk of " model collapse”
presents a challenge in maintaining the
truthfulness and utility of synthetic data

This term refers to the degradation of AI models
that occurs when they are repeatedly trained on
data produced by other models. This recursive
training can result in the perpetuation of models
‘hallucinating,” or overemphasising common
patterns while underrepresenting rarer ones,

leading to unrealistic synthetic data generation



How can Synthetic improve our work

Generate new evidence

Synthetic Arm

Data augmentation

Data Sharing/Reproducibility (Privacy/GDPR)



The patient journey

Generate new evidence

Post-operative MRI scan
3D-MRIs

Molecular Diagnostics

CHOICE

THERAPY

Recurrence

Surgery Radiotherapy
Check- Temolozomide
surgery

o PET Check-therapy

Diagnosis




GLIADEL (CW) SEEMS TO SUSTAIN A BETTER SURVIVAL

Generate new evidence

STATISTICAL APPROACH
MACHINE LEARNING APPROACH
|
Climarac:eristicn HR«(95é/o-CI)1ﬂ p-value= + SURVIVAL + DEATH
UNIVARIATE 0~ - . gliadel o wocme o emumms oo
1= 0.53:(0.34-to-0.81)=  0.003=

'HR-=-Hazard-Ratio, CI-=-Confidence-Interval=

~0.02 000 002 004 006 008 010 0.12
SHAP value (impact on model output)

Characteristice HR:(95% CI)i= p-value=
gliadel=
ox —n
1o 0.62:(0.40't0°0.96)= 0.032=
MULTIVARIATE ~ Yolimepre:  1.01(1.00t01.02):  0.25: Shap dependence plot show how the model output
EOR= 0.94:(0.91:t0-0.98)= 0.002= H
) varies by feature value.
0u —n o
L HA7H0.50itox0. 7414 <0 0i01n When patients are treated with CW, we improve

1HR-=-Hazard-Ratio, -CI-=-Confidence-Interval=

survival time




Patients most likely to benefit from a particular treatment can be identified using

machine learning?
Generate new evidence

o —% ..... RF MODEL 0751
e > I 3 = GlacelsBeneft
'1:'* ‘: St § 050 E:ﬁﬁ}m I 0 I 0 —_—)

¥ Y ‘% = Stuppso-Benelit I 0 I 0 0.504

= 1T

Mutation

Minor Benefit Treatment

0 20 40 60 80
Time

The objective is to identify the molecular status associated with full treatment benefit.
This finding lends support to the safety and efficacy of the treatment.

The result may provide a rationale for the creation of a validation clinical trial to evaluate
the treatment.

1. RWD can be used to identify eligible patients
2. identify which subgroup respond better to treatment (develop other RCT)
3. use of generative procedure to validate model and understand the patients



DEVELOP THE FINAL MODEL

Generate new evidence

Germline Variants

RF MODEL [] o L_O_ —
Optimization Decision Support

Generate fair data based on unfair data

=  Augment small-sample data sets

= Adapt data to new domains

= Simulate unseen scenarios & realistic futures

Generate realistic synthetic test sets for ML model
testing (3S)

Explanation of the model E\;ﬁtycir:mw
Performance Model IN SUBGROUPS
Biological mechanism

Simulation Syntetic Data
@Tmin GAN 2 "I:ram Survival Function :® Train Tlme.Reg'ressor

Train

lme to

@ Generate Synthetic Survival Data
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Synthetic Control Arms for Rare Tumors:

A Realistic Alternative to Placebo

Comment

https://doi.org/10.1038/s41591-023-02578-7

Rethinking placebos: embracing synthetic
control armsinclinical trials for rare tumors

César Serrano, Sara Rothschild, Guillermo Villacampa, Michael C. Heinrich,
Suzanne George, Jean-Yves Blay, Jason K. Sicklick, Gary K. Schwartz, Sameer Rastogi,
Robin L. Jones, Piotr Rutkowski, Neeta Somaiah, Victor Navarro, Denisse Evans &

Jonathan C. Trent

M Check for updat:

External comparator arms should be used
wheninvestigating novel therapies for
gastrointestinal stromal tumor and other
rare tumors to facilitate drug testing and
regulatory approvals.

Rare cancers, hindividually account for approxi-
mately one-quarter of all malignancies. Population-based studies have

care that could be used as a comparator. Several measures were take
to maximize the likelihood of exposure to the experimental trez
ment arm, such as uneven randomizations, crossover designs ar
early response assessment. However, late-stage GIST has increasit
aggressiveness and tumor bulk after numerous lines of treatmer
and therefore the use of a placebo posesa substantial risk to patient
This was evidenced recently in the INVICTUS trial, which compare
ripretinib to placebo after progression following three or more lin
of treatment formetastatic disease’. In this study, one-third of patien
originally allocated to placebo during the double-blind period we

Generate Synthetic Arm

@ Progression-free survival

B Experimental arm (overall) M Placebo arm (overall) ' Experimental arms ' Placebo arms

1.0 ..........................................................................................................................................
mPFS (months)
Exp. Pla.
SUNI(n=312) 63m 15m
08 N CRD(=19) 48m 09m
* RIGHT(n=81) 18m 09m
- INVICTUS (n=129) 63m 10m
S SUNI CHAPTER(n=86) 28m 14m
S Total(n=807) 4.2m 12m
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5
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Fig.1|Progression-free and overall survivalin GIST. a,b, Progression-free
survival (a) and overall survival (b) Kaplan-Meier curves for the placebo and
experimental armsin the five placebo-controlled RCTs of treatments for
imatinib-resistant GIST. SUNI*, sunitinib versus placebo (asterisk denotes the

b overallsurvival

W Experimental arm (overall) M Placebo arm (overall) ' Experimental arms ' Placebo arms

1075 M35 958 4 S AR A SRS LA
TS RN [N B S i, SO O P S
g T TR e T S NVICTUS
e
=
w
K]
3 mOS (months) RIGHT
Exp. Pla.
SUNI (n=312) NR 84m
... GRID(n=199) NR - NR
02 RIGHT (h1=81) 82m 75m
INVICTUS (n=129) 151m 6.6m
CHAPTER(n=86) 13.8m 96m
Total (n=807) 13.9m 9.8m
B
- - - ‘ - - - )
(o] 2 4 6 8 10 12 14

Time (months)
use of time to treatment failure rather than progression-free survival as primary
endpoint); GRID, regorafenib versus placebo; RIGHT, imatinib versus placebo;
INVICTUS, ripretinib versus placebo; CHAPTER, pimitespib versus placebo;
mPFS, median progression-free survival; m, months.




No More Placebos? Rethinking Control Arms with Synthetic Data

Generate Synthetic Arm

https://doi.org/10.1038/s41591-023-02488-0

A synthetic control armfor refractory
metastatic colorectal cancer:the noplacebo

Initiative
Pooled Candidate external Single arm stratified
placebo data i ) control data trial data
Top x% of Eligibility filter * *
patients with a using basgll_ne Combined analysis using individual patient data
good prognosis characteristics
Propensity score-based analysis for baseline
adjustment: disease control rate, overall response
rate, overall survival, progression-free survival.
Fig.1| Three-step analysis for no-placebo patientsin the top percentile for overall survival will
initiative. First, participants enrolled in trials with be extracted from the synthetic control arm. Third,
placebo arms will be selected based on compatible the synthetic control arm will be compared with

patient demographics and key characteristics. These  patients inthe trial, using propensity scored-based
datawill form the synthetic control arm. Second, analysis.




CAN MOLECULAR STATUS GUIDE OPTIMAL TREATMENT SELECTION IN
RECURRENT GLIOBLASTOMA?

Generate Synthetic Arm

A
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Regorafenib
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ORIGINAL VS SYNTHETIC: DO THE DATA TELL THE SAME STORY?

STATISTIC PROPRIETY
Survival by mgmt in original Data G ENOM IC
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METHODOLOGICAL INNOVATIONS IN AI-DRIVEN TRIALS: SYNTHETIC ARMS, CAUSAL
ESTIMATION, AND DCT FRAMEWORKS

G-computation, propensity score-based methods, and

targeted maximum likelihood estimator for causal

Alleviation of patient inference with different covariates sets: a comparative
burden simulation study

Together, these methods lay the foundation for a new
generation of clinical trials — flexible, inclusive, and
analytically robust —where Al, through techniques like
Deployment of Ease of operational Double Machine Learning and model averaging,

[Cehfoody Monitoring becomes a powerful engine for causal inference in both
real-world and synthetic data.

Advantages of
DCTs

SPRINGER NATURE Link fm ettt e ot n A+ 2y e £ e e g mon + vere < ey <t
Findajournal  Publishwithus  Trackyourresearch Q search MOdeI Averagi ng and Dou ble MaChine Learn ing

Achim Ahrens, Christian B. Hansen, Mark E. Schaffer, Thomas Wiemann

Home > Therapeutic Innovation & Regulatory Science > Article

This paper discusses pairing double/debiased machine learning (DDML) with stacking, a model averaging method for combining multiple candidate learners, to estimate structural parameters. In
addition to conventional stacking, we consider two stacking variants available for DDML: short-stacking exploits the cross-fitting step of DDML to substantially reduce the computational burden and
pooled stacking enforces common stacking weights over cross-fitting folds. Using calibrated simulation studies and two applications estimating gender gaps in citations and wages, we show that DDML
toEn rich CIinicaI Trial Data with stacking is more robust to partially unknown functional forms than common alternative approaches based on single pre-selected learners. We provide Stata and R software implementing our

naccess | Published: 25N proposals.

ges 443-455,(2024) C

The Next Horizon of Drug Development:
External Control Arms and Innovative Tools




VIRTUAL MTB-DRIVEN HYPOTHESIS GENERATION
SYNTHETIC DATA GENERATION

Data Augmentation: Synthetic data can increase the volume and diversity of available
datasets, aiding in the development of more robust Al models.

Privacy-Preserving Research: Synthetic data allows researchers to work with data that
represents patient characteristics without revealing personal information, thus safeguarding
patient privacy.

Standardization: Ensures consistent data formatting and structure, which is especially
useful when integrating multiple data sources (e.g., genomic, clinical, radiomic data).
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EXAMPLE OF AUGUMENTATION
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SYNTHETIC MUTATION PROFILES: PRESERVING SIGNAL OR INTRODUCING NOISE?
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WHAT HAPPENS WHEN CRITICAL MOLECULAR INFORMATION IS LOST?

Kaplan-Meier: ATRX Mutated under Simulated Dropout
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Survival Probability

Kaplan-Meier: 70% dropout on ATRX
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CONCLUSION

Doctor, are you
sure that | am ok
now? My head
still hurts.

Well, the computer

assures me that you

are fine and it has
given me 100

Synthetic data provides a safe sandbox for
scientific exploration, especially when real data is
limited, sensitive, or restricted.

Y| ] ;
Context matters: clinical relevance and underlying 1 | remsans Toris
biological complexity must guide the generation |
and interpretation of synthetic datasets to avoid S
misleading conclusions. A

Real data remains essential: while synthetic data
can support hypothesis generation, real-world data
is the cornerstone for validation and clinical
decision-making.
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